Wesentliche technische Voraussetzungen sind die Digitalisierung und das Cloud Computing.
Die Voraussetzungen dafür, dass Big Data, selbstlernende Systeme und Predictive Analytics (Vorhersagen, die auf statistischen Verfahren und Wahrscheinlichkeitsrechnung beruhen) überhaupt möglich sind. Was dieses exponentielle Wachstum bedeutet, ist sehr schön in dem Märchen vom Schachbrett und dem Reiskorn erzählt...
Das Cloud Computing schickt sich an, die klassische Client Server-Architekturen in den Unternehmen zu vertreiben. Die wichtigsten Merkmale:
Themenstellungen wie Mobiles Arbeiten, Flexibilisierung der Arbeitszeiten, Führung virtueller Teams rücken damit in den Fokus der Betriebsratsarbeit
Eigenentwickelte Software oder Kauf-Software mit in der Regel Lizenz- und Wartungsmodellen werden durch Nutzungs-Modelle wie PaaS (Platform as a Service) oder SaaS (Software as a Service) abgelöst. Bezahlt wird nach Nutzungsdauer und Verbrauch, so wie bei Strom oder Wasser.
Wie erfolgreich und lukrativ das Geschäftsmodell Cloud Computing ist, zeigen unlängst veröffentliche Quartalszahlen von Amazon, dem Google-Konzern Alphabet und Microsoft. So wies z.B. Microsoft allein mit seiner Cloud-Plattform Azure im abgelaufenden Quartal ein Umsatzwachstum von plus 90 Prozent aus, die verschiedenen Cloud-Produkte werden - nach Angaben des Konzerns - auf das Gesamtjahr hochgerechnet wohl einen Umsatz von über 20 Milliarden Dollar erreichen.
Jetzt sind wir an einem Punkt, an dem alle technische Zutaten für Big Data bereit stehen:
Die Form, die für Big Data die größten Möglichkeiten bietet, ist, die Software als einen Service anzubieten.
Spielen wir das Ganze am größten Big-Data-Projekt der Welt durch, an Google und seiner Suchmaschine. Der Zweck der Suchmaschine ist: der Kunde soll finden, was er sucht, nämlich Internetseiten.
Googles Suchmaschine ist weltweit kostenlos zugänglich - kostenlos - stimmt nicht ganz.
Wir - die Benutzer - bezahlen mit der Speicherung unserer Daten und unserer Suchbegriffe.
Google erhält täglich Milliarden von Informationen, u.a.
alles messbar und auswertbar.
Die wichtigste Geschäftsidee Googles beruht auf der Suche der Benutzer, nämlich die zielgruppenspezifische Werbung. Damit macht Google noch über 80 Prozent seines Umsatzes. Die Big-Data Methode dahinter ist das sog. Target-Marketing.
Die Geschäftsideen des Google-Konzern reichen von
Der Google-Konzern war es auch, der mit einer seiner Big Data-Anwendung Google Flu 2009 in Fachkreisen für Aufmerksamkeit sorgte.
In diesem Jahr schlugen Gesundheitsbehörden weltweit Alarm. Man befürchtete, dass durch Mutation des Vogelgrippevirus eine Übertragung auf den Menschen erfolgen und zu einer weltweiten Pandemie führen könnte. Erste Verdachtsfälle wurden schon gemeldet. Ein Impfstoff war noch nicht in Sicht. Erinnerungen an die Spanische Grippe kamen auf, die 1918 bis 1920 Millionen Menschen den Tod brachte.
Durch die Jahre zuvor in den USA eingeführte Meldepflicht bei Erkrankung mit Grippeviren standen zwar die Ausbreitungsdaten - wie Ort, Zeitpunkt und Anzahl der Erkrankten - zur Verfügung, aber erst zeitverzögert, nach den Ausbrüchen, und genau das war das Problem. Bei einem hochvirulenten Erreger ist nach kürzester Zeit die kritische Masse der Infizierten meist überschritten, bei der eine Eindämmung durch Gegenmaßnahmen noch möglich ist.
Kurz davor hatte Google in Fachzeitschriften veröffentlicht, dass seine neue Anwendung Google Flu Region und Zeit von Grippeausbrüchen im Vorfeld prognostizieren könne.
Wie war man vorgegangen: Google nahm die veröffentlichten Grippedaten der US-Gesundheitsbehörden von 2003 bis 2008 und verglich sie mit den 50 Millionen am häuftigsten eingegebenen Suchbegriffen der Google-Nutzerinnen und Nutzer der USA. Der Gedanke dahinter war, ob sich die Eingabehäufigkeit bestimmter Suchbegriffe vor Ausbruch der Grippe verändert hatte. Man prüfte unterschiedliche mathematische Modelle und glich die Voraussage-Ergebnisse mit den tatsächlichen Grippedaten von 2007 bis 2008 ab. So fand man schließlich ein Modell, mit dem man anhand von 45 Suchbegriffen die Ausbreitung der Grippe (Region und Zeit) erfolgreich prognostizieren konnte. Die Behörden gewannen dadurch einen wertvollen Zeitvorsprung im Kampf gegen den Virus.
Wie verhält sich Google Flu als typische Big-Data-Anwendung vor dem Hintergrund des Datenschutzes? Wir halten die drei Grundprinzipien des Datenschutzes dagegen, die Zweckbindung, die Verhältnismäßigkeit bzw. Datensparsamkeit und die Transparenz.
Keiner der Software- oder Internet-Anbieter (weder Amazon, Google, Facebook, noch Microsoft oder SAP ) holt eine Einwilligung für Folgezwecke in der Zukunft ein. Nicht nur diese Beispiele und ihre ständig erweiterten Services zeigen, dass die Auswirkungen von Big Data für die Gesellschaft als solche sehr virulent sind.
So verwenden in den USA beispielsweise Bewährungsausschüsse in mehr als der Hälfte der US-Bundesstaaten Verhaltensvorhersagen auf Grundlage einer Datenanalyse, wenn sie entscheiden, ob eine Haftstrafe zur Bewährung ausgesetzt wird.
Und in immer mehr Städten der USA gibt es das sog. predictive policing. Aufgrund einer Big-Data-Analyse werden Straßen, Gruppen, und sogar einzelne Menschen stärker überwacht, nur weil ein Algorithmus sie als anfälliger für Verbrechen identifiziert hat.
Bedenklich stimmen auch Beispiele wie der Trump-Wahlkampf 2016. Das dort eingesetzte Mikro-Targeting der Firma Cambridge Analytica macht überdeutlich, dass durch Vermischung, Kombination und Anreicherung verschiedener Datenpools – die käuflich oder öffentlich kostenlos zugängig sind - auch Rückschlüsse auf Personen kein Problem mehr darstellen und Raum für zielgenaue Ansprache oder auch Manipulation bieten. Mit dieser Methode hat Herr Trump in den Swinging States seine Wahl gewonnen
Das letzte Beispiel zeigt auch, dass die datenschutzrechtlichen Instrumente wie Anonymisierung und Pseudonymisierung von personenbezogenen Daten durch Big Data zunehmend ihre Wirkung verlieren.
Aber auch bei betrieblichen Themen spielen die neuen Möglichkeiten zunehmend eine Rolle. Nehmen wir ein ganz schlichtes Thema, die Instandhaltung.
Traditionelle Instandhaltungs-Systeme verwalten unter anderem Wartungspläne für Maschinen und Anlagen. Um ungeplante Stillstände zu vermeiden, liefern diese Systeme Hinweise, wann welche Maschinenteile ausgewechselt werden sollen. Die Informationen stammen aus dem oft über Jahre gesammelten Erfahrungswissen der Maschinenführer, Techniker und Ingenieure. Jeder einzelne Instanthaltungsvorgang wird dokumentiert und gespeichert.
Was passiert, wenn ein solches System als Cloud-Lösung mit Big-Data-Analysen angeboten wird. Spielen wir das mal am fiktiven Beispiel eines big data-gestützten SAP-Plant Managements durch. Das passt gut, weil SAP von sich selbst sagt, es sei auf dem Weg zur Cloud Company und weil es mit seinen vielen Modulen Fantasien für zukünftige Verknüpfungskombinationen fast keine Grenzen setzt.
Wie alle großen Anbieter wird sich auch der Anbieter einer solchen Dienstleistung von den Unternehmen vertraglich zusichern lassen, dass er die Daten seiner Kunden zur Verbesserung des eigenen Services verwenden darf.
Da ist der Weg kurz zur Erstellung einer Best Practice-Auswertung, die den Unternehmen dann wiederum als Service angeboten wird, wann welche Teile zu warten oder zu ersetzen sind, bis hin zu kompletten Wartungsplänen.
Was vorher hochqualifizierte Fachleute mit ihrer Erfahrung vorgegeben haben, erhalten die Firmen jetzt per Service quasi auf Knopfdruck: Vorhersagen, die zu jedem Zeitpunkt aktualisierbar und genauer sind als jedes einzelne Unternehmen, sei es noch so groß, diese ermitteln könnte.
Die Risiken für die Beschäftigung in den Unternehmen sind leicht ableitbar:
Bei diesem harmlos klingenden Beispiel Instandhaltung fragt sich mancher Betriebsrat, was dort zu tun ist, denn die Auswertungen selbst lassen ja keinerlei Personenbezug mehr erkennen.
Gewonnen wurden diese Daten jedoch aus Daten über Vorgänge, die von Personen bewerkstelligt wurden. Der Personenbezug wurde dann zwar entfernt, aber die Auswirkungen auf die Beschäftigten, ihre Arbeitsplätze, Arbeitsbedingungen, Bezahlung und Qualifikation sind erheblich und fallen unter die klassischen Themen der Mitbestimmung nach § 87 Abs. 1 BetrVG.
Über das Plant Management-System hinaus lassen sich dann für das Personal vielfältige weitere Cloud-Services anbieten:
Warum also nicht das Bewerbermanagement zur Auswahl von „geeigneten“ Bewerbern per Algorithmen mit einem Performance- und Talentmanagement kombinieren, oder gleich per Knopfdruck Zielerreichung und Geldbestandsteile automatisch errechnen, am besten auch bei wiederholtem Low-Performen die Top Ten der besonders geeignete Maßnahmen zur Regelung des Problems ausweisen – natürlich als Best-Practice per Big Data Service?
Und zur Motivation gleich die neue Blüte von SAP: JobPts, ein System, bei dem elektronische Bonuspunkte für tolles Helfen oder was auch immer vergeben werden können, angepriesen als leicht mit Beschäftigtendaten und Payroll integrierbar.
Das Geschäftsmodell Big Data wird zu Big Business und für die Software-Anbieter und Unternehmen zum Win-Win-Modell. Auf der Strecke bleiben, wenn die Betriebsräte nicht aufpassen, die Beschäftigten.
Nun stellt sich die Frage, helfen uns der Datenschutz und die Mitbestimmung bei Big Data, und was braucht es noch für Weiterentwicklungen.
Rekapitulieren wir kurz nochmals die Paradigmen von Big Data:
und stellen sie den Datenschutzprinzipien - Datensparsamkeit, Transparenz, Zweckbindung, Recht auf Vergessen - gegenüber, so bleibt folgendes festzustellen:
Durch Big Data mit seinen neuartigen statistischen Analyseverfahren verlieren die uns bekannten Prinzipien des Datenschutzes einen Großteil ihrer Regelungstauglichkeit.
Big Data Anwendungen werben mit Anonymisierun bzw. Pseudonymisierung von personenbezogenen Daten. Dadurch wird die datenschutzrechtliche Relevanz oft nicht erkannt.
Eine Re-Identifzierung stellt jedoch aufgrund der vielfachen Kombinations- und Verknüpfungsmöglichkeiten kein unlösbares Problem mehr dar.
Bereits 2011 wurde von einem Forscherteam veröffentlicht, dass nicht nur konventionelle Daten, sondern auch der sogenannte Social Graph – die Beziehungen der Menschen untereinander - äußerst anfällig für Re-Identifikation ist.
Wo bietet der Datenschutz neue Chancen, wo Risiken, wo liegen die Hoffnungen, wo die Grenzen der neuen Datenschutzgrundverordnung?
Große Hoffnungen verbinden sich
Inwieweit die aktuellen Datenschutzgesetze in Zeiten von Big Data die Balance zwischen den Rechten der betroffenen Personen und den Unternehmensinteressen halten oder auch wieder herstellen können, bleibt abzuwarten.
Was fehlt:
Bis zur Klärung dieser Fragen empfiehlt sich die strikte Beachtung insbesondere des Grundsatzes der Datensparsamkeit, vor allem bei sogenannten Personalinstrumenten und angebotenen social Media – und Predictive Analytics-Funktionen.
Big Data verletzt die Normen des traditionellen Datenschutzes Zweckbindung, Verhältnismäßigkeit bzw. Datensparsamkeit und Normenklarheit. Deshalb muss für Big Data-Anwendungen in den Betrieben gelten:
Mitbestimmung first - Datenschutz als Ergänzung!
Ingrid Maas, November 2017 |